Industrie im Dialog mit Anwendern und Verbrauchern

Wir bauen Zukunft

Porenbeton Kalksandstein

Bauen für die Zukunft - Nachhaltigkeit Ökonomische Aspekte der Nachhaltigkeit 3 Ökologische Aspekte der Nachhaltigkeit Soziokulturelle Aspekte 5 H+H - Kalksandstein und Porenbeton 6 H+H – Wirtschaftlichkeit und Ökologie

Bauen für die Zukunft - Nachhaltigkeit 2 3 5 6

Bauen für die Zukunft - Nachhaltigkeit

Hauptsäulen der Nachhaltigkeit

Ökonomische Aspekte

- Grundstücks- / Planungskosten
- Kosten für die Gebäudeerstellung / Baukosten
- Betriebskosten
- Kosten für Pflege,
 Unterhaltung,
 Umbau,
 Instandsetzung
- Rückbaukosten

Ökologische Aspekte

- Bauweise / Gebäudeform
- Dauerhaftigkeit
- Baustoffe
- Wärmeschutz
- Energieträger
- Anlagentechnik
- Wassernutzung
- Abfall / Entsorgung

Soziokulturelle Aspekte

- Funktionalität
- Gestaltungsqualität
- Gesundheit / Wohlbefinden

2 Ökonomische Aspekte der Nachhaltigkeit 3 5 6

Ökonomische Aspekte der Nachhaltigkeit

Hauptsäulen der Nachhaltigkeit

Ökonomische Aspekte

- Grundstücks- / Planungskosten
- Kosten für die Gebäudeerstellung / Baukosten
- Betriebskosten
- Kosten für Pflege, Unterhaltung, Umbau, Instandsetzung
- Rückbaukosten

Ökologische Aspekte

- Bauweise /Gebäudeform/Dauerhaftigkeit
- Baustoffe
- Wärmeschutz
- Energieträger
- Anlagentechnik
- Wassernutzung
- Abfall / Entsorgung

Soziokulturelle Aspekte

- **Funktionalität**
- Gestaltungsqualität
- Gesundheit / Wohlbefinden

Kosten für Gebäudeerstellung / Baukosten

Ökonomische Aspekte

- Grundstücks- / Planungskosten
- Kosten für die Gebäudeerstellung / Baukosten
- Betriebskosten
- Kosten für Pflege, Unterhaltung, Umbau, Instandsetzung
- Rückbaukosten

Erschließungskosten

Kosten Bauwerk (Baukonstruktion)

Kosten Bauwerk (technische Anlagen)

Außenanlagen

Baunebenkosten

Finanzierungskosten

Kosten für Gebäudeerstellung / Wirtschaftlichkeit

Optimierungspotential Kosten Bauwerk (Baukonstruktion)

Nutzflächengewinn durch optimierte, schlanke Außenwände

Optimierte, flexible Gebäude- / Tragkonstruktionen

Wirtschaftliche Erstellung durch Einsatz großformatiger Bauteile

Optimierung der Baustellenprozesse / Bauabläufe

Einsatz modularer Bauweisen

Abgestimmte Konstruktionen

PB Multielement

Betriebs- und Unterhaltungskosten / Wirtschaftlichkeit

Optimierungspotential Betriebskosten und Unterhaltungskosten

Minimierung Energiebedarf durch gute Wärmedämmung

Einsatz robuster, wartungsarmer Konstruktionen

Flexible Grundriss- und Konstruktionsgestaltung

Optimierung der Gebäudetechnik

Einschalige Wandkonstruktion

Mehrschalige Wandkonstruktion

2 3 Ökologische Aspekte der Nachhaltigkeit 5 6

Hauptsäulen der Nachhaltigkeit

Ökologische Aspekte

- Bauweise / Gebäudeform/ Dauerhaftigkeit
- Baustoffe
- Wärmeschutz
- Energieträger
- Anlagentechnik
- Wassernutzung
- Abfall / Entsorgung

Massive Wandbaustoffe für dauerhafte, langlebige Konstruktionen

Baustoffe mit optimalen Parametern – Bauphysik und Statik Wärmeschutz – Schallschutz – Brandschutz - Tragfähigkeit

Wärmeschutztechnisch optimierte Konstruktionen für niedrigen Energiebedarf während der Nutzungsphase

Ökologische Baustoffe mit guter CO_2 -Bilanz

Recycling- oder Entsorgungsmöglichkeiten bei Rückbau

2 3 Soziokulturelle Aspekte 5 6

Hauptsäulen der Nachhaltigkeit

Ökonomische Aspekte

- Grundstücks- / Planungskosten
- Kosten für die Gebäudeerstellung / Baukosten
- Betriebskosten
- Kosten für Pflege, Unterhaltung, Umbau, Instandsetzung
- Rückbaukosten

Ökologische Aspekte

- Bauweise / Gebäudeform/ Dauerhaftigkeit
- Baustoffe
- Wärmeschutz
- Energieträger
- Anlagentechnik
- Wassernutzung
- Abfall / Entsorgung

Soziokulturelle Aspekte

- **Funktionalität**
- Gestaltungsqualität
- Gesundheit / Wohlbefinden

Soziokulturelle Aspekte der Nachhaltigkeit

4

Schutzziele für soziokulturelle Nachhaltigkeit

Gesundheit / Wohlbefinden **Funktionalität Gestaltungsqualität Fassadengestaltung Funktionalität** Wärmeschutz **Einordnung in die** Anpassungsfähigkeit Raumklima Zugänglichkeit Umgebung Schallschutz **Identität** Brandschutz Belichtung Barrierefreiheit Sicherheit

2 3 5 H+H - Kalksandstein und Porenbeton 6

H+H - Kalksandstein und Porenbeton

Herstellung und Produktsysteme

H+H Porenbeton-Werke in Deutschland

1 Werksstandort Wittenborn

2 Werksstandort Hamm

3 Werksstandort Laußnitz

4 Werksstandort Feuchtwangen

5 Headoffice Düsseldorf

6 Domapor-Werk Hohen Wangelin

Porenbetonwerk Hamm

H+H Kalksandstein-Werke in Deutschland

KS-Werk Kavelstorf

2 KS-Werk Herzfelde

3 KS-Werk Dresden

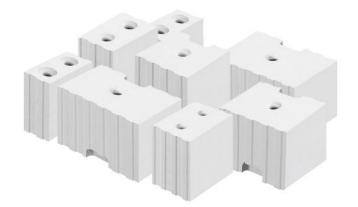
4 KS-Werk Babenhausen

5 KS-Werk Durmersheim

Domapor-Werk Hohen Wangelin

Kalksandsteinwerk Kavelstorf

- 6 Abhollager Kronau
- 7 Abhollager Breisach-Niederrimsingen
- 8 Headoffice Düsseldorf



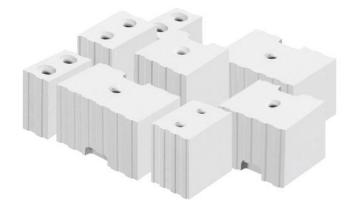
Porenbeton und Kalksandstein – Definitionen / Geschichte

Kalksandstein

- Industriell hergestellter Mauerwerksbaustoff mit hoher Masse aus Sand und Kalk als Bindemittel sowie Wasser
- Erfinder des Herstellungsverfahrens ist der Arzt und Naturwissenschaftler Anton Bernhardi
- 1856 erste konkrete Anleitung zur Herstellung
- 1880 erstes Patent zur Erzeugung von Kalksandstein in Berlin

Porenbeton

- Industriell hergestellter, mineralischer Mauerwerksbaustoff mit hoher Porosität und vergleichsweise geringer Masse
- Beginn der Entwicklung im 19. Jahrhundert
- 1918 1923 erste Laborversuche durch Axel Erikson (schwedischer Architekt)
- 1924 Patentierung des Verfahrens
- 1929 Start der Produktion im schwedischen Yxhult



Porenbeton und Kalksandstein – Vorteile / Unterschiede

Kalksandstein

- Hervorragende Tragfähigkeit / Druckfestigkeit
- Hohe Rohdichte / sehr gute Schalldämmung
- Nicht brennbar Baustoffklasse A1
- Wärmedämmung aufgrund der hohe Rohdichte eingeschränkt
- Im Außenwandbereich nur mit Zusatzdämmung einsetzbar
- Sehr gute baubiologische Eigenschaften
- Sehr gute Ökobilanz

Porenbeton

- Hohe Tragfähigkeit / Druckfestigkeit
- Gute Schalldämmung
- Nicht brennbar Baustoffklasse A1
- Hervorragende Wärmedämmung durch geringe Rohdichte und niedrige Lambdawerte
- bei größeren Außenwanddicken ist keine Zusatzdämmung erforderlich
- Sehr gute baubiologische Eigenschaften
- Sehr gute Ökobilanz

Rohstoffe Kalksandstein:

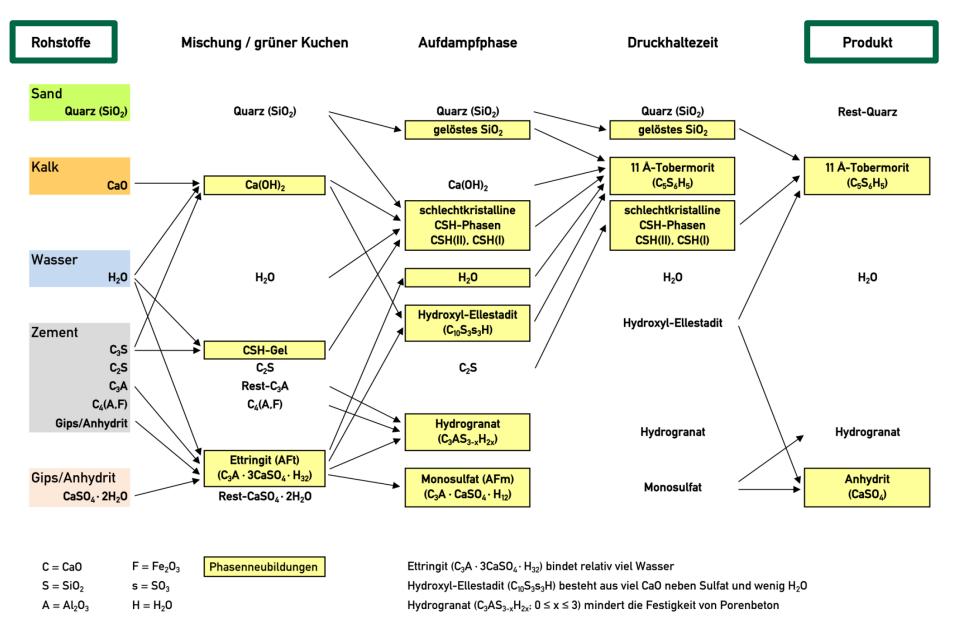
Rohstoffe Porenbeton:

Sand

Sand

Wasser

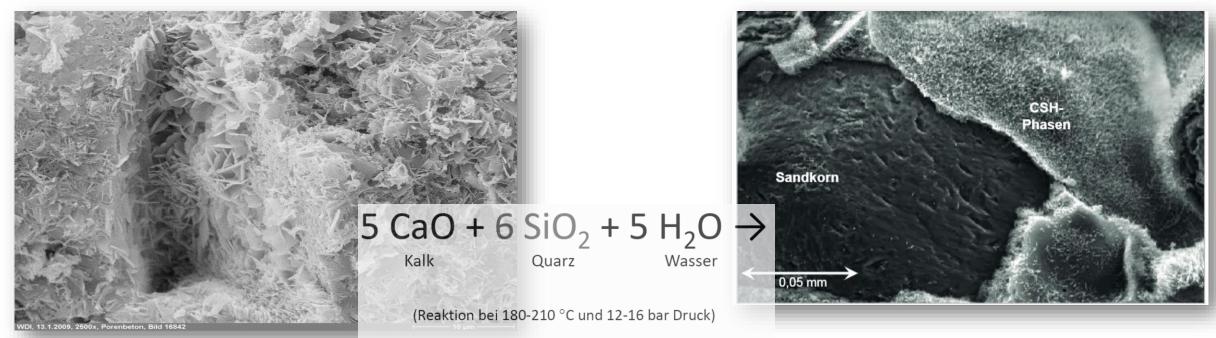
Wasser


Kalk

- Kalk
- Zement
- Gips

24

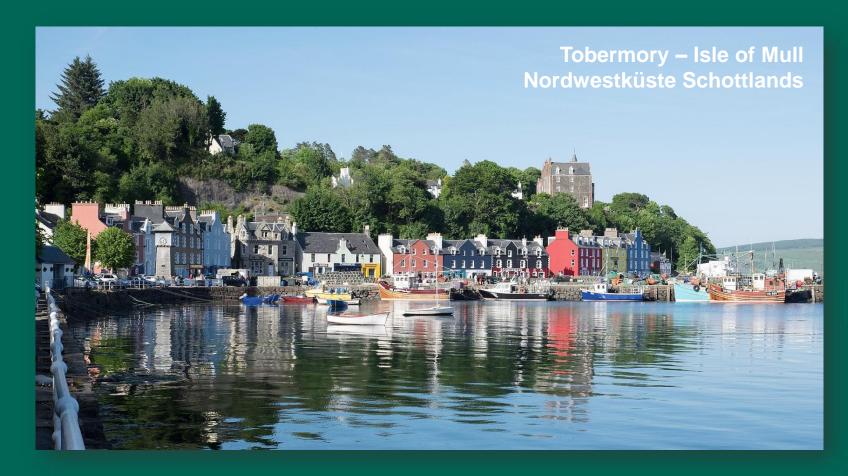
Aluminium



07.04.2025

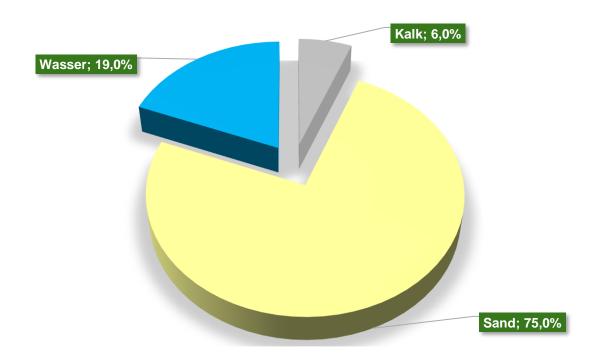
Porenbeton und Kalksandstein = Tobermorit

 $5CaO\cdot6SiO_2\cdot5H_2O$


11 Å-Tobermorit $(C_5S_6H_5)$ Calcium-Silikat-Hydrat = CSH-Phase

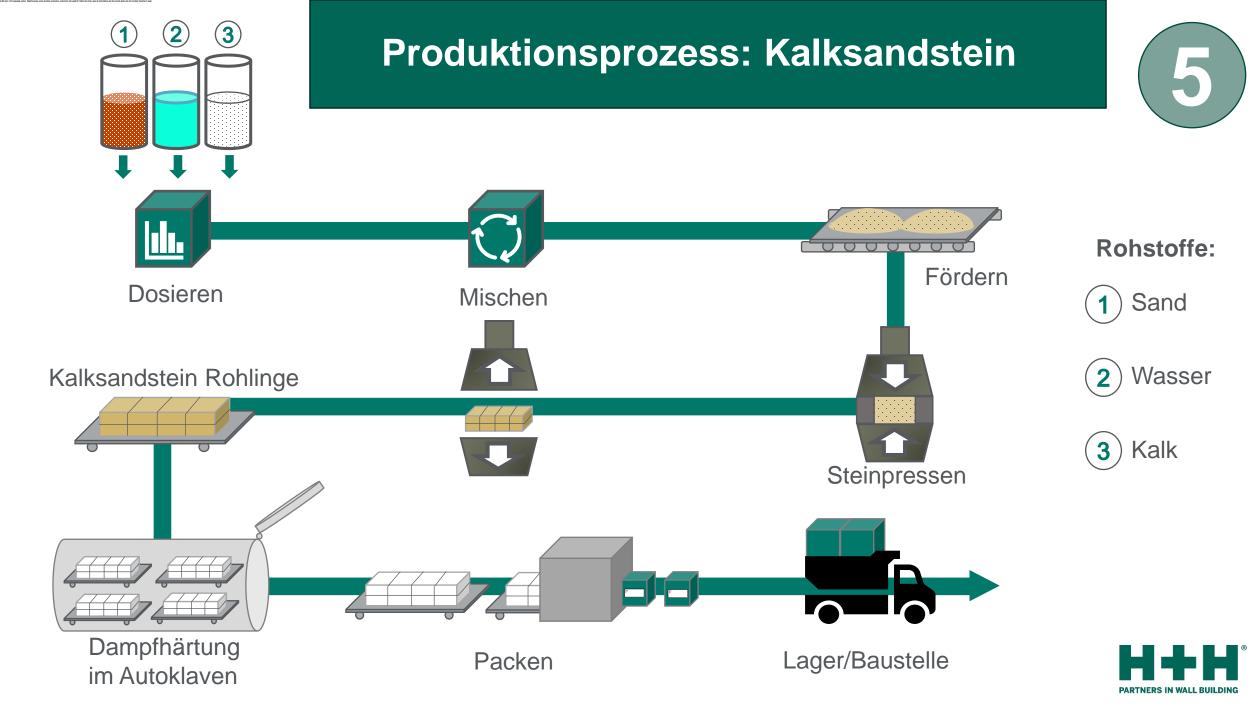
Tobermorit - nach dem schottischen Fundort benanntes Calciumsilicathydrat

Porenbeton und Kalksandstein = Tobermorit

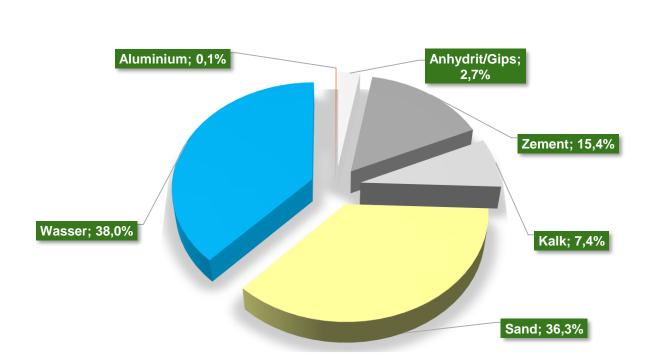


Tobermorit - nach dem schottischen Fundort benanntes Calciumsilicathydrat

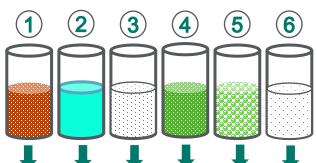
Rohstoffanteile für Kalksandstein



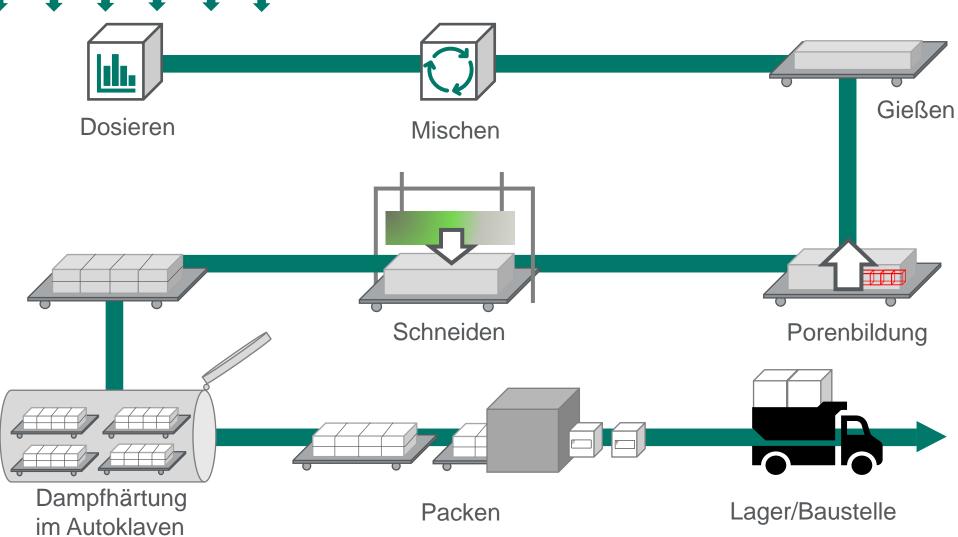
Kalksandstein ist rein und unbehandelt und besteht ausschließlich aus den natürlichen Rohstoffen Kalk, Sand und Wasser.


Kalk + Wasser + Sand

Rohstoffanteile für Porenbeton am Beispiel PP 4 - 0,55



ca. 70 - 80 % Porenanteil


1 m³ Rohstoffe ~ 4 - 5 m³ Porenbeton

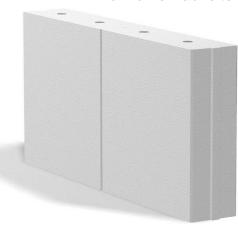
Produktionsprozess: Porenbeton

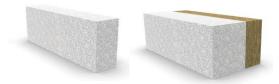
H+H Porenbeton - Das volle Programm

H+H Planstein

Der Klassiker – Vom Keller bis zum Dach

H+H EcksteinSystemgerechte Ergänzung


H+H Tempoplan


Der Schnelle – Handlich mit mehr Tempo

Der Superschnelle – Für kurze Bauzeiten

H+H DeckenrandlösungSystemgerechte Ergänzung

H+H Höhenausgleichsstein

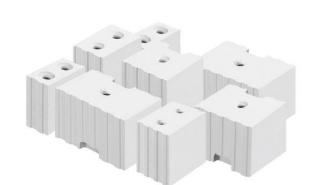
Systemgerechte Ergänzung

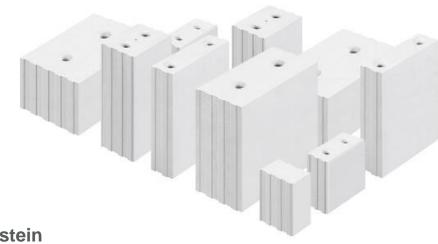
H+H U-Schale

Die Perfekte – Schalung im System

H+H Planbauplatte

Die Schlanke – Für leichte Trennwände


H+H Kalksandstein - Das volle Programm

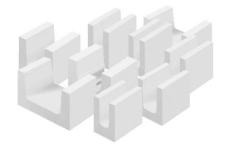


KS-QUADRO (KS XL)

KS Kleinformat

KS Flachsturz

KS Bauplatte



KS Mittelformat

KS Kimmstein

KS U-Schale

KS-ISO-Kimmstein

KS-QUADRO E (KS XL-E)

2 3 5 6 H+H – Wirtschaftlichkeit und Ökologie

H+H – Wirtschaftlichkeit und Ökologie

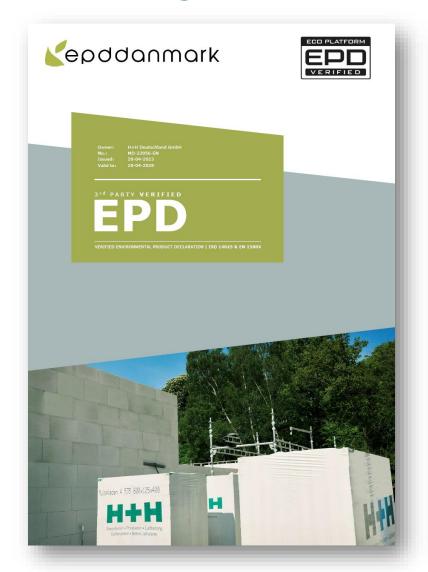
H+H Porenbeton und Kalksandstein – Nachhaltigkeit

6

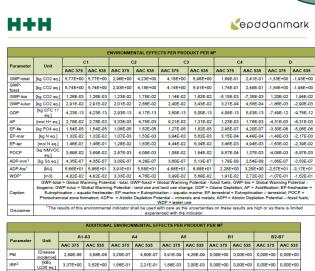
Der Grund für das Thema Nachhaltigkeit Was tut H+H

Regionale Rohstoffe, kurze Transportwege und bewährte Qualität unserer Produkte schonen Ressourcen und die Umwelt.

Unser Team aus erfahrenen Spezialisten steht Ihnen für Beratungen und diverse Serviceleistungen in der Planung und der Ausführung zur Verfügung.



Hohe Anforderungen an Wärme-, Brand- und Schallschutz sind für unser massives Mauerwerk kein Problem. Dadurch eröffnen sich vielfältige Möglichkeiten, um rationell und kreativ zu bauen.



Nachhaltigkeit - H+H Porenbeton - EPD / Umweltproduktdeklaration

Parameter	Unit	0	:1	(22	С	3	(34		D			
			ADDITION	NAL ENVIR	ONMENTAL E	FFECTS PE	R PRODUK	T PER M ⁸						
					materials is a									
					cts due to po ties. Potential									
		² This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear												
Disclaimers	¹ The results of this environmental indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.													
Caption		PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)												
SQP ¹	-	3,08E+02	3,96E+02	2,35E+02	3,33E+02		6,51E-01	0,00E+00	0,00E+00		0,00E+0			
HTP-no ¹	[CTUh]	1,14E-08	1,89E-06	4,40E-07	6,23E-07	2,37E-09	2,83E-09	0,00E+00	0,00E+00		0,00E+0			
HTP-c1	[CTUh]	1,65E-08	2,36E-08	8,10E-09	1,15E-08	<u> </u>	4,29E-11	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
ETP-fw ¹	[CTUe]	2,17E+02	2,74E+02	3,93E+02	5,57E+02	.,	1,05E+00	0,00E+00	0,00E+00	0.00E+00	0,00E+0			

			ADDITIO	NAL ENVIRO	NMENTAL	EFFECTS PE	R PRODUK	T PER M ³			
Parameter	Unit	C	1	c	2	С	3	C	4	D	
Farameter		AAC 375	AAC 535	AAC 375	AAC 535	AAC 375	AAC 535	AAC 375	AAC 535	AAC 375	AAC 535
PM	[Disease incidence]	3,19E-07	3,19E-07	2,29E-08	3,26E-08	9,11E-08	1,30E-07	1,52E-08	2,16E-08	-2,10E-07	-3,25E-07
IRP ²	[kBq U235 eq.]	1,59E-02	1,59E-02	1,10E-02	1,57E-02	1,32E-02	1,88E-02	2,82E-03	4,02E-03	-3,04E-01	-3,72E-01
ETP-fw1	[CTUe]	4,01E+01	4,01E+01	2,77E+01	3,95E+01	3,32E+01	4,73E+01	1,28E+00	1,82E+00	-8,19E+00	-1,15E+01
HTP-c ¹	[CTUh]	8,27E-10	8,27E-10	5,71E-10	8,15E-10	6,84E-10	9,76E-10	1,95E-10	2,78E-10	-5,41E-10	-7,90E-10
HTP-no1	[CTUh]	5,43E-08	5,43E-08	3,10E-08	4,42E-08	3,93E-08	5,60E-08	2,16E-08	3,07E-08	-4,91E-08	-7,42E-08
SQP1	-	2,40E+01	2,40E+01	1,66E+01	2,36E+01	1,98E+01	2,83E+01	4,74E-01	6,76E-01	-3,77E+00	-5,51E+00
Caption	PM = Parti				radiation - h					TP-c = Huma less)	in toxicity -
Disclaimers	¹ The res	sults of this e	nvironmental	indicator sha		th care as the ced with the		s on these re	sults are hig	h or as there	is limited
										ne nuclear fue	
										disposal in un asured by thi	

MD-23056-EN | [H+H Deutschland GmbH] | Page 8 of 13

Auszug EPD Mai 2023

Nachhaltigkeit - H+H Kalksandstein - Umweltproduktdeklaration

UMWELT-PRODUKTDEKLARATION nach ISO 14025 und EN 15804+A2

Kalksandstein

Bundesverband Kalksandsteinindustrie e.V.

KALKSANDSTEIN

Bundesverband Kalksandsteinindustrie

IBU - Institut Bauen und Umwelt e.V. 10178 Berlin

Deklarationsnummer EPD-BKS-20210205-IBE2-DE

Deutschland

Kalksandstein, 11,2017

(PCR geprüft und zugelassen durch den unabhängigen Sachverständigenrat (SVR))

Ausstellungsdatum

Kalksandstein

Deutschland

Bundesverband Kalksandsteinindustrie e.V. Entenfangweg 15 30419 Hannove

Deklariertes Produkt/deklarierte Einheit 1 Tonne Kalksandstein

Die Anwendung dieses Dokumentes ist auf Kalksandsteine beschränkt, die von Mitgliedsunternehmen des Bundesverband Kalksandsteinindustrie e.V. hergestellt werden. Für diese Deklaration wurden von 52 Produktionsstandorten Daten aus dem Jahr 2019 zur Verfügung gestellt. Diese Mitglieder repräsentieren nach Anzahl rund 70 % der im Bundesverband

Kalksandsteinen. Das Produktionsvolumen dieser Firmen liegt - nach Produktionsmenge - bei über 70 % Der Inhaber der Deklaration haftet für die

zugrundeliegenden Angaben und Nachweise; eine Haftung des IBU in Bezug auf Herstellerinformationen, erstellt. Im Folgenden wird die Norm vereinfacht als EN 15804

Die Europäische Norm EN 15804 dient als Kern-PCR Unabhängige Verifizierung der Deklaration und Angaben gemäß ISO 14025:2010 intern x extern

Die genannten Produkte sind Mauersteine

verschiedener Maße und Grenzahmaße aus Kalksandstein mit unterschiedlicher Form und Ausbildung. Kalksandstein gehört zur Gruppe der dampfgehärteten Baustoffe. Für das Inverkehrbringen des Produkts in der EU/EFTA (mit Ausnahme der Schweiz) gilt die Verordnung (EU) Nr. 305/2011 (CPR). Das Produkt benötigt eine Leistungserklärung unter Berücksichtigung von EN 771-2:2011+A1:2015. Festlegungen für Mauersteine - Teil 2: Kalksandsteine und die CE-Kennzeichnung

Für die Verwendung gelten die jeweiligen nationalen Bestimmungen.

2.2 Anwendung
Kalksandsteine in geschütztem und ungeschütztem

2.3 Technische Dater

Rautechnische Daten

Bezeichnung	Wert	Einheit
Brutto- Trockenrohdichte nach EN 772-13	≥ 1,01 ≤ 3,60	kg/dm³
Mittelwert der Druckfestigkeit senkrecht zur Lagerfläche nach EN 772-1	≥5 ≤75	N/mm²
Brandverhaltensklasse nach	A1	2

KALKSANDSTEIN

Es folgt die Darstellung der Umweltwirkungen für 1 t Kalksandstein, hergestellt von den Mitgliedern de Bundesverband Kalksandsteinindustrie e.V.

Die folgenden Tabellen zeigen die Ergebnisse der Indikatoren der Wirkungsabschätzung, des Ressourceneinsatzes sowie zu Abfällen und sonstigen Output-Strömen bezogen auf die deklarierte Einheit.

FP--freshwater: Dieser Indikator wurde in Übereinstimmung mit dem Charakterisierungsmodell (FUTREND-Modell, Struijs et al., 2009b, wie in ReCiPe umgesetzt; http://eplca.jrc.ec.europa.eu/LCDN/developerEF.xhtml))

			ERT; I							INALI	EN; N					KATOK
Produktionsstadiu Produktionsstadiu Errichtung des Bauwerks					Nutzungsstadium					Entsorgungsstadium				Gutschriften und Lasten außerhalb der Systemgrenze		
Rohstoffversorgung	Transport	Herstellung	Transport vom Hersteller zum Verwendungsort	Montage	Nutzung/Anwendung	Instandhaltung	Reparatur	Ersatz	Emenerung	Energieeinsatz für das Betreiben des Gebäudes	Wassereinsatz für das Betreiben des Gebäudes	Rückbau/Abriss	Transport	Abfallbehandlung	Beseltigung	Wiederverwendungs- Rückgewinnungs- oder Recyclingpotenzial
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	X	Х	Х	ND	MNR	MNR	MNR	ND	ND	Х	Х	Х	Х	Х

X	X	X X	X	X N	MNR	MNR	MNR	ND N	D X	X	X	X	X
ERGE	BNIS	SE DER ÖK	OBILAN	NZ – UM	WELTAL	JSWIR	KUNGE	N nach	EN 1580	4+A2: 1	Tonne	Kalksa	ndstein
Kemir	ndikator	Einheit	A1-A3	A4	A5	B1	C1	C2	C3/1	C3/2	C4/2	D	D/I
GW	P-total	[kq CO ₂ -Äq.]	1,26E+2	3,93E+0	3,04E+0	-4,75E+1	6,12E-1	1,64E+0	2,51E+0	0,00E+0	1,40E+	1 -9,32E-1	-2,71E+0
GWF	P-fossil	[kg CO ₂ -Aq.]	1,26E+2	3,92E+0	3,04E+0	0,00E+0	6,36E-1	1,63E+0	2,50E+0	0,00E+0	1,52E+	1 -9,28E-1	-2,72E+0
GWP-	biogenic	[kg CO ₂ -Äq.]	6,65E-3	1,57E-3	-7,81E-3	0,00E+0	-2,70E-2	6,56E-4	4,77E-3	0,00E+0	-1,20E+	0 -3,32E-3	1,69E-2
	2-luluc	[kg CO ₂ -Äq.]	8,63E-2	1,64E-2	4,51E-3	0,00E+0				0,00E+0			-8,98E-3
0	DP	[kg CFC11-Äq.	4,09E-13			0,00E+0				0,00E+0	5,68E-1	4 -1,32E-14	
- /	√P	[mol H*-Aq.]	1,04E-1	3,63E-3	1,06E-2	0,00E+0	3,01E-3	1,51E-3	2,35E-2	0,00E+0	1,09E-	1 -1,94E-3	-8,54E-3
EP-fre	shwater	[kg PO ₄ -Aq.]	1,24E-4	8,52E-6	2,46E-6	0,00E+0	1,33E-6	3,55E-6	5,97E-6	0,00E+0	2,61E-1	5 -1,89E-6	-8,17E-6
EP-r	narine	[kg N-Äq.]	3,92E-2	1,13E-3	1,52E-3	0,00E+0	1,42E-3	4,71E-4	1,16E-2	0,00E+0	2,80E-	2 -3,94E-4	-3,24E-3
	rrestrial	[mol N-Āq.]	4,32E-1	1,37E-2	1,71E-2	0,00E+0				0,00E+0			-3,56E-2
PC	OCP	kg NMVOC-Ac	1,09E-1	2,99E-3	4,61E-3	0,00E+0	3,97E-3	1,25E-3	3,35E-2	0,00E+0	8,48E-	2 -1,10E-3	-7,67E-3
A	PE	[kg Sb-Äq.]	1,05E-5	3,25E-7	2,48E-6	0,00E+0	5,07E-8	1,36E-7	2,75E-6	0,00E+0	1,37E4	-7,07E-6	-5,82E-7
AI)PF	[MJ]	9,35E+2	5,20E+1	2,08E+1	0,00E+0	8,11E+0	2,17E+1	4,71E+1	0,00E+0	1,99E+	2 -1,30E+1	-3,54E+1
W	DP	[m³ Welt-Äq. entzogen]	8,22E+0	1,69E-2	8,12E-1	0,00E+0	2,63E-3	7,03E-3	4,22E-1	0,00E+0	1,58E+	0 -3,81E-2	-6,59E-2

GWP - Globales Endimungspotenzial, ODP - Abbaupotenzial der shalosphärischen Ozorschicht, AP - Versauerungspotenzial von Boden um Wasser, EP - Estrophenungspotenzial PCOP - Bibliongspotenzial für posporjahrenhen Ozorschicht, APF - Potenzial für die Verlanspungs von bezötellung Resourcion - nicht tosele Resourcion (APP - Selbrig (APP - Februarial für de Verlanspungs) von bezötellung Resourcion - nicht tosele Resourcion (APP - Selbrig (APP - Februarial für de Verlanspungs) absolicher Resourcion - Ensiel bezötellung (APP - Februaria für de Verlanspungs) absolicher Resourcion - Ensiel bezoten (APP - Februaria für de Verlanspungs) absolicher Resourcion - Ensiel bezoten (APP - Februaria für de Verlanspungs) absolicher Resourcion - Ensiel bezoten (APP - Februaria für de Verlanspungs) absolicher Resourcion - Ensiel Bezoten (APP - Februaria für de Verlanspungs) absolicher Resourcion - Februaria für de Verlanspungs absolicher Resourcion - Februaria für de Verlan

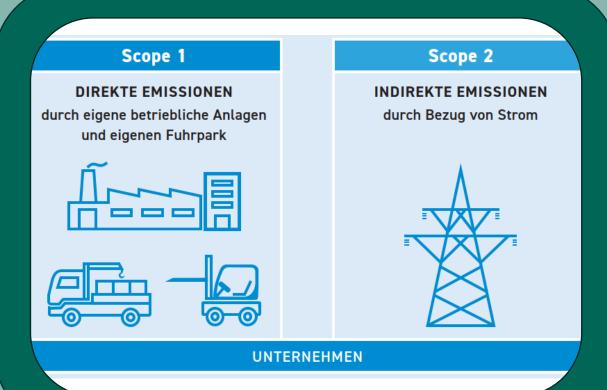
Indikator	Einheit	A1-A3	A4	A5	B1	C1	C2	C3/1	C3/2	C4/2	D	D/1
PERE	[MJ]	1,06E+2	3,03E+0	3,91E+0	0,00E+0	4,72E-1	1,26E+0	3,96E+0	0,00E+0	2,61E+1	-3,18E+0	-1,01E+1
PERM	[MJ]	0,00E+0	0,00E+0									
PERT	[MJ]	1,06E+2	3,03E+0	3,91E+0	0,00E+0	4,72E-1	1,26E+0	3,96E+0	0,00E+0	2,61E+1	-3,18E+0	-1,01E+1
PENRE	[MJ]	9,35E+2	5,20E+1	2,08E+1	0,00E+0	8,11E+0	2,17E+1	4,71E+1	0,00E+0	1,99E+2	-1,10E+1	-3,54E+1
PENRM	[MJ]	0,00E+0	0,00E+0									
PENRT	[MJ]	9,35E+2	5,20E+1	2,08E+1	0,00E+0	8,11E+0	2,17E+1	4,71E+1	0,00E+0	1,99E+2	-1,10E+1	-3,54E+1
SM	[kg]	5,20E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0	9,38E+2	0,00E+0	0,00E+0	0,00E+0	0,00E+0
RSF	[MJ]	0,00E+0	0,00E+0									
NRSF	[MJ]	0,00E+0	0,00E+0									

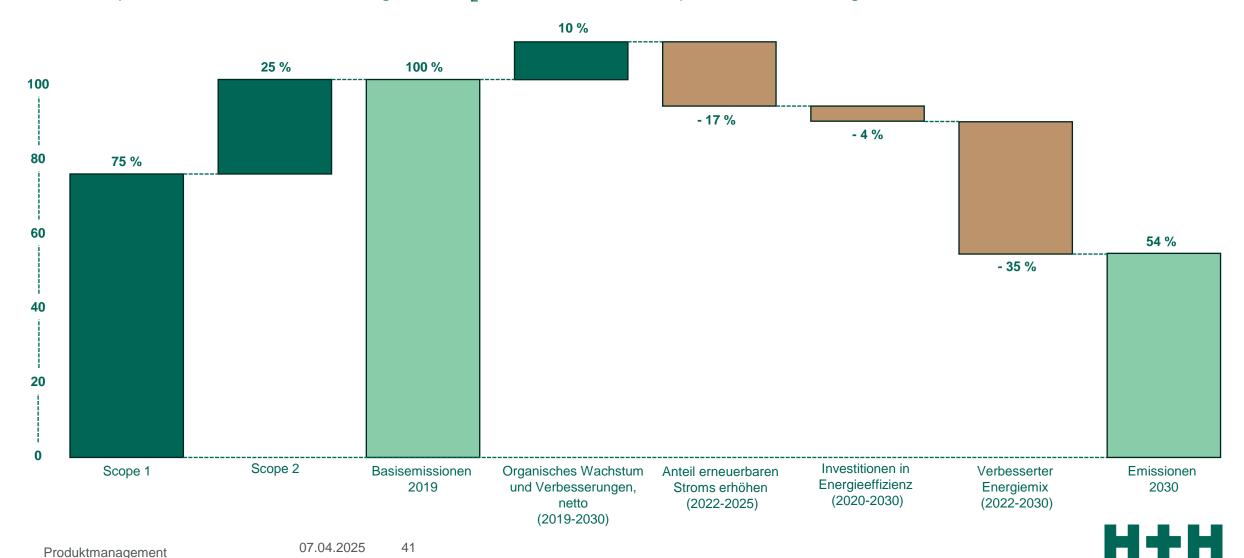
mm 2002.1 2785.3 1185.0 0085.0 4282.4 1082.3 1285.0 0085.0 5082.2 2485.3 4485.4 1082.0 1285.0

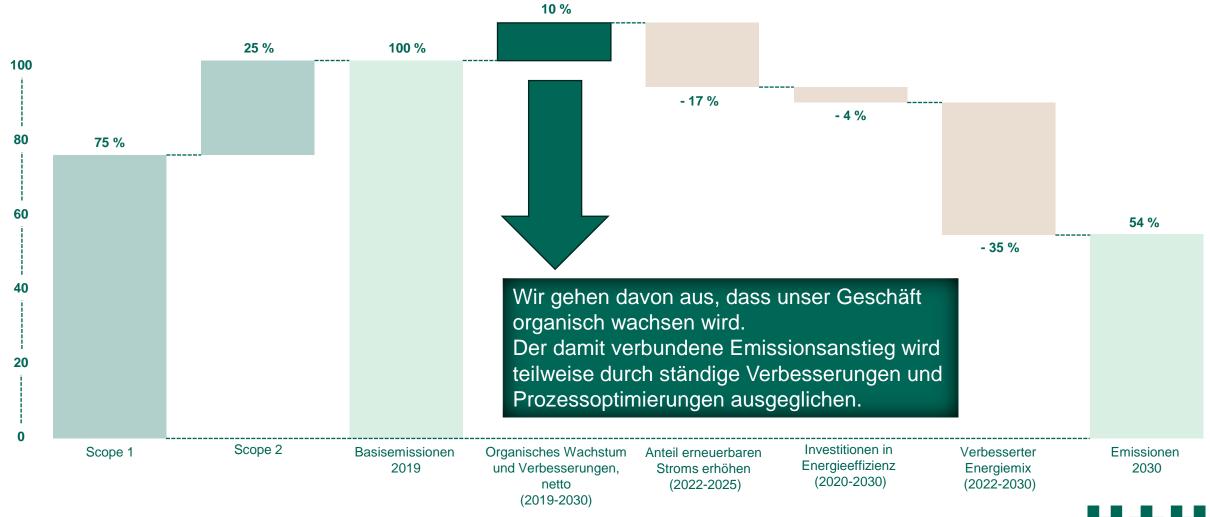
Auszug Branchen-EPD KS- Bundesverband

6

Weg zu einer treibhausgasneutralen Porenbetonund Kalksandsteinindustrie in Deutschland



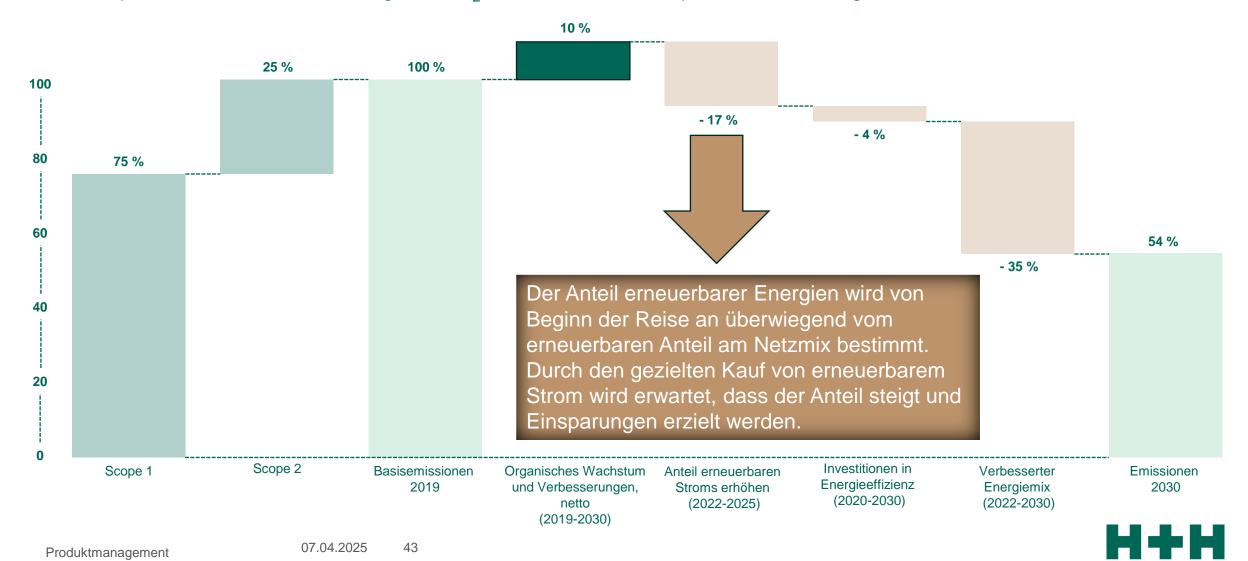




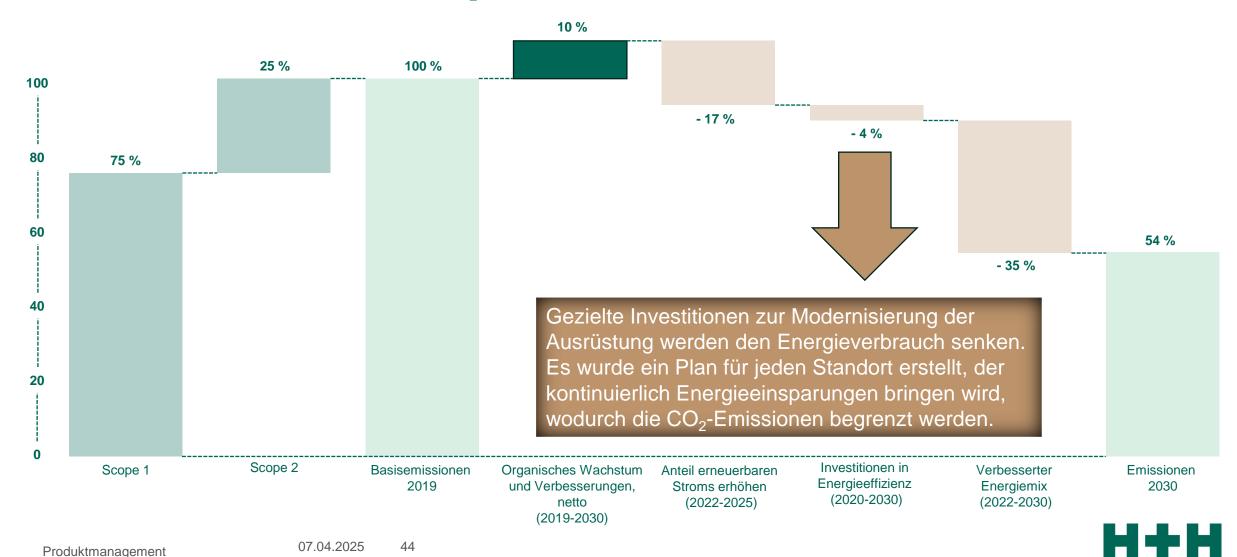
6

6

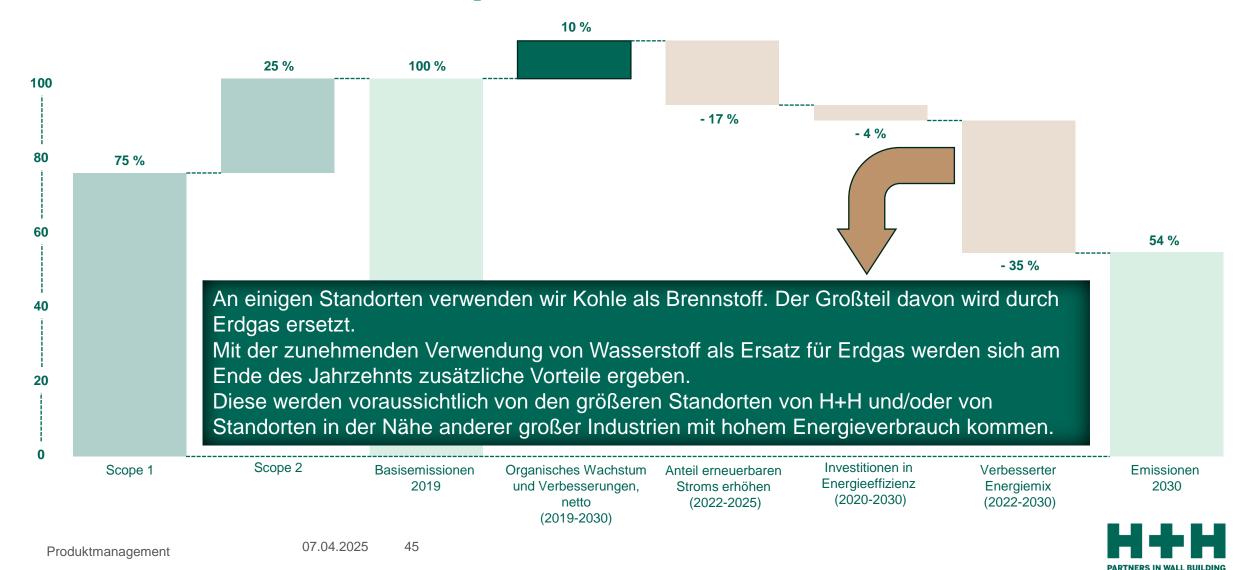
Der Fahrplan von H+H zur Erreichung von CO₂-Reduktionen für Scope 1+2 im Einklang mit dem Pariser Abkommen

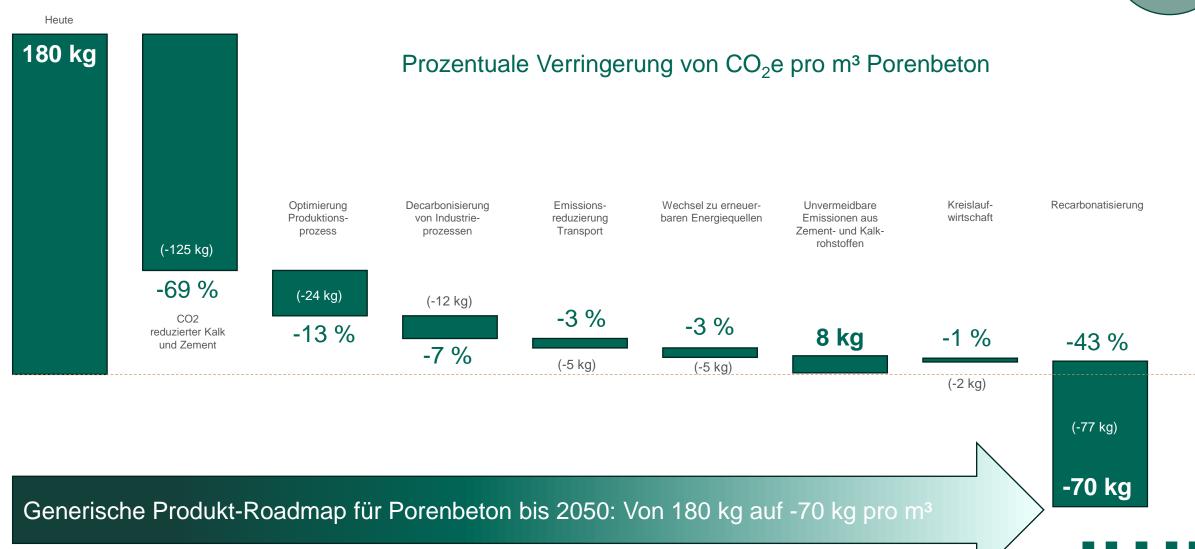


DARTNERS IN WALL BUILDING


07.04.2025 42

Produktmanagement


6


6

6

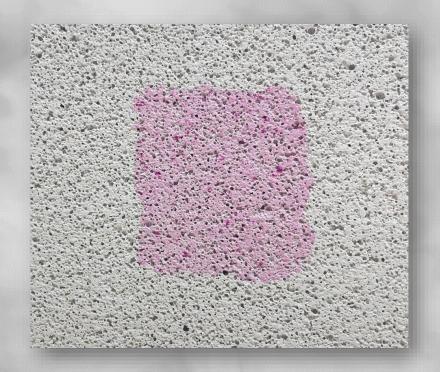
PARTNERS IN WALL BUILDING

H+H Porenbeton und Kalksandstein - Recarbonatisierung

RECARBONATISIERUNG

Dauerhafte Einbindung von CO2 in die Kristallstrukturen während der gesamten Lebensdauer

Recarbonatisierungsreaktion: CSH + CO₂ = CaCO₃ + SiO₂ + H₂O



H+H Porenbeton und Kalksandstein - Recarbonatisierung

Carbonatisierung / Recarbonatisierung ist die gut erforschte, natürliche chemische Reaktion kalk- bzw. zementgebundener Baustoffe - durch die Reaktion der CSH-Phasen mit CO₂ entsteht Calciumcarbonat CaCO₃.

Wenn die Probe an der Schnittfläche mit der Phenolphthalein-Lösung besprüht wird, werden nicht carbonatisierte Bereiche, in denen der pH-Wert über 8,2 liegt, intensiv purpurrot angefärbt, während carbonatisierte Bereiche farblos bleiben.

H+H Porenbeton und Kalksandstein - Recarbonatisierung

H+H Porenbeton und Kalksandstein – Kreislauf – Cradle to Cradle

- Rückschlammnutzung Porenbetonproduktion
- **Porenbeton-Granulate**
- Trockenschüttung
- Ölbinder
- Chemikalienbinder
- **Filtersubstrate**
- Tierstreu / Katzenstreu

